Reversal of the ΔdegP Phenotypes by a Novel rpoE Allele of Escherichia coli

نویسندگان

  • Owen P. Leiser
  • Emily S. Charlson
  • Henri Gerken
  • Rajeev Misra
چکیده

RseA sequesters RpoE (σ(E)) to the inner membrane of Escherichia coli when envelope stress is low. Elevated envelope stress triggers RseA cleavage by the sequential action of two membrane proteases, DegS and RseP, releasing σ(E) to activate an envelope stress reducing pathway. Revertants of a ΔdegP ΔbamB strain, which fails to grow at 37°C due to high envelope stress, harbored mutations in the rseA and rpoE genes. Null and missense rseA mutations constitutively hyper-activated the σ(E) regulon and significantly reduced the major outer membrane protein (OMP) levels. In contrast, a novel rpoE allele, rpoE3, resulting from the partial duplication of the rpoE gene, increased σ(E) levels greater than that seen in the rseA mutant background but did not reduce OMP levels. A σ(E)-dependent RybB::LacZ construct showed only a weak activation of the σ(E) pathway by rpoE3. Despite this, rpoE3 fully reversed the growth and envelope vesiculation phenotypes of ΔdegP. Interestingly, rpoE3 also brought down the modestly activated Cpx envelope stress pathway in the ΔdegP strain to the wild type level, showing the complementary nature of the σ(E) and Cpx pathways. Through employing a labile mutant periplasmic protein, AcrA(L222Q), it was determined that the rpoE3 mutation overcomes the ΔdegP phenotypes, in part, by activating a σ(E)-dependent proteolytic pathway. Our data suggest that a reduction in the OMP levels is not intrinsic to the σ(E)-mediated mechanism of lowering envelope stress. They also suggest that under extreme envelope stress, a tight homeostasis loop between RseA and σ(E) may partly be responsible for cell death, and this loop can be broken by mutations that either lower RseA activity or increase σ(E) levels.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A suppressor of cell death caused by the loss of sigmaE downregulates extracytoplasmic stress responses and outer membrane vesicle production in Escherichia coli.

When envelope biogenesis is compromised or damage to envelope components occurs, bacteria trigger signaling cascades, which lead to the production of proteins that combat such extracytoplasmic stresses. In Escherichia coli, there are three pathways known to deal with envelope stresses: the Bae, Cpx, and sigma(E) responses. Although the effectors of the Bae and Cpx responses are not essential in...

متن کامل

The RpoE Stress Response Pathway Mediates Reduction of the Virulence of Enteropathogenic Escherichia coli by Zinc.

Zinc supplements are an effective clinical treatment for infantile diarrheal disease caused by enteric pathogens. Previous studies demonstrated that zinc acts on enteropathogenic Escherichia coli (EPEC) bacteria directly to suppress several virulence-related genes at a concentration that can be achieved by oral delivery of dietary zinc supplements. Our in vitro studies showed that a micromolar ...

متن کامل

Impact of the RNA chaperone Hfq on the fitness and virulence potential of uropathogenic Escherichia coli.

Hfq is a bacterial RNA chaperone involved in the posttranscriptional regulation of many stress-inducible genes via small noncoding RNAs. Here, we show that Hfq is critical for the uropathogenic Escherichia coli (UPEC) isolate UTI89 to effectively colonize the bladder and kidneys in a murine urinary tract infection model system. The disruption of hfq did not affect bacterial adherence to or inva...

متن کامل

Synthetic effect between envelope stress and lack of outer membrane vesicle production in Escherichia coli.

Outer membrane vesicles (OMVs) are composed of outer membrane and periplasmic components and are ubiquitously secreted by Gram-negative bacteria. OMVs can disseminate virulence factors for pathogenic bacteria as well as serve as an envelope stress response. From a transposon mutant screen for OMV phenotypes, it was discovered that an nlpA mutant of Escherichia coli produces fewer OMVs than the ...

متن کامل

Role of the extracytoplasmic function protein family sigma factor RpoE in metal resistance of Escherichia coli.

RpoE of Escherichia coli is a sigma factor of the extracytoplasmic function protein family and is required for the expression of proteins involved in maintaining the integrity of periplasmic and outer membrane components. RpoE of E. coli was needed for full resistance to Zn(II), Cd(II), and Cu(II). Promoter gene fusion and quantitative real time reverse transcription (RT)-PCR (qRT-PCR) assays d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2012